

Developer Manual

Copyright

Copyright © 2011 NHN Corp. All Rights Reserved.

This document is provided for information purpose only. NHN Corp. has endeavored to verify the

completeness and accuracy of information contained in this document, but it does not take the

responsibility for possible errors or omissions in this document. Therefore, the responsibility for the

usage of this document or the results of the usage falls entirely upon the user, and NHN Corp. does

not make any explicit or implicit guarantee regarding this.

Software products or merchandises mentioned in this document, including relevant URL information,

conform to the copyright laws of their respective owners. The user is solely responsible for any results

occurred by not complying with applicable laws. NHN Corp. may modify the details of this document

without prior notice.

Important Information regarding Open Source Licenses

There are several types of open source licenses. XE is licensed under the GNU Lesser General Public

License (LGPL) v2. As there is a slight difference between LGPL v2 and LGPL v3, it is important to

keep the version in mind. LGPL is basically the same as GPL, but its scope of application is more

restrictive. Like GPL, LGPL has the effect of forcing all software that includes any LGPL-licensed

software to have the same license. While GPL requires all software that includes any GPL-licensed

software to unconditionally open its source codes, LGPL-licensed programs do not need to open their

source code when they are used under specific conditions. Therefore, LGPL-licensed software can also

be used for developing proprietary software. For more information, see the website below.

LGPL License: http://www.gnu.org/copyleft/lesser.html

GPL License: http://www.gnu.org/licenses/gpl.html

http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/licenses/gpl.html

 3

Introduction to Document

Document Overview

This document describes how to develop XE additional features including modules, addons and

widgets. The information in this document is based on XE core 1.5.x.

Audience

This intended audience of this document is users who want to develop XE additional features. This

document does not cover the basic knowledge of using web servers and PHP, which you need to

know to better understand how to develop XE additional features. Please refer to the related books

and documents, if necessary.

Contact

For any comments or inquiries regarding the document, contact via email below.

Email: developers@xpressengine.com

Revision History

Ver. Date Changes Mode

1.1 Sep. 6, 2012 Modified sub-query.

1.1 Dec. 30, 2011 Updated based on XE core 1.5

1.0 Jul. 29, 2011 1.0 version distributed.

mailto:developers@xpressengine.com

4

Conventions

Note Symbol

Note

A note provides information that is useful for readers.

Caution Symbol

Caution

A caution provides information that you should know in order to prevent system damages.

Window, Site, Menu, and Field Names/Selected Value and Symbol

Window, site, menu and field names, a selected value, and a symbol are marked as follows:

• Window name: In bold type such as window name window. Note that this convention is not
applied in source code.

• Site name: Enclosed in single quotations such as 'Naver Desktop Download’ site.

• Menu name: In bold type such as Menu > Submenu.

• Input value: In italic type such as homepage.

Source Code

Source code is written in black on a gray background in this document.

COPYDATASTRUCT st;

st.dwData = PURPLE_OUTBOUND_ENDING;

st.cbData = sizeof(pp);

st.lpData = &pp;

::SendMes(GetTargetHwnd(), WM_COPYDATA, (WPARAM)this->m_hWnd, (LPARAM)&st);

 5

Table of Contents

1. Understanding XE core _____________________________________ 9

1.1 Overview ___ 10

1.2 Request lifecycle overview __ 11

1.2.1 Context Initialization ___ 12

1.2.2 Module Initialization __ 12

1.2.3 Running the requested module action ______________________________ 12

1.2.4 Generating response output _______________________________________ 12

1.3 Directory structure ___ 13

1.3.1 addons Directory ___ 13

1.3.2 classes Directory ___ 14

1.3.3 common Directory __ 14

1.3.4 config Directory __ 15

1.3.5 files Directory __ 15

1.3.6 layouts Directory ___ 17

1.3.7 modules Directory __ 18

1.3.8 themes Directory ___ 19

1.3.9 widget Directory ___ 20

1.3.10 widgetstyle Directory ___ 20

2. Extending XE ___ 21

2.1 Modules __ 22

2.1.1 How to create config/info.xml _____________________________________ 22

2.1.2 Creating actions __ 22

2.1.3 Using action forward __ 24

2.1.4 Using triggers __ 25

2.1.5 Using ruleset __ 25

2.1.6 Using form filters ___ 26

2.1.7 Defining database queries ___ 27

2.2 Addons ___ 29

6

2.2.1 When to Call Addons __ 29

2.2.2 Variables to Be Passed When Calling an Addon _______________________ 30

2.2.3 Creating an addon __ 30

2.2.4 How to Use XE XML Query ___ 31

2.2.5 What to Consider When Creating Addons ____________________________ 31

2.3 Widgets ___ 33

2.3.1 Creating config/info.xml ___ 33

2.3.2 Creating widget class __ 33

2.3.3 Extra Vars __ 34

3. Working with DB ___ 35

3.1 Introduction __ 36

3.2 XML Schema Language Reference _____________________________________ 37

3.3 XML Query Language __ 39

3.3.1 How to use ___ 39

3.3.2 XML elements used ___ 39

3.3.3 Examples of using XML subquery ___________________________________ 42

3.4 Data Type Mapping __ 44

3.5 XML Query Parser ___ 45

3.6 XE Database Classes __ 46

4. Working with Forms __ 47

4.1 Introduction __ 48

4.2 Example of XE Form ___ 49

4.2.1 Creating the form view __ 49

4.2.2 Adding the XML ruleset file and the controller action __________________ 50

4.2.3 Showing the greeting message _____________________________________ 50

5. Using Document Module ____________________________________ 53

5.1 Introduction __ 54

5.2 Document Module ___ 55

5.2.1 Creating documents ___ 55

5.2.2 Document attributes __ 55

5.2.3 Document URLs __ 56

5.2.4 Document categories __ 56

5.2.5 Document revision history ___ 57

5.2.6 Retrieving documents ___ 57

6. API Reference __ 59

 7

6.1 XE Global Functions ___ 60

6.2 Context Class ___ 64

6.3 Extravar Class __ 65

6.4 Mail Class ___ 66

6.5 Object Class __ 68

6.6 FileHandler Class ___ 69

8

List of Tables and Figures

List of Tables

Table 1-1 XE directory structure __ 13

Table 1-2 addons directory structure ___ 13

Table 1-3 classes directory structure ___ 14

Table 1-4 common directory structure __ 14

Table 1-5 config directory structure __ 15

Table 1-6 files directory structure __ 15

Table 1-7 layouts directory structure ___ 17

Table 1-8 modules directory structure __ 18

Table 1-9 themes directory structure ___ 19

Table 1-9 widget directory structure __ 20

Table 1-10 widgetstyle directory structure ____________________________________ 20

Table 2-1 Properties used in actions __ 23

Table 2-2 Elements and properties used in ruleset ____________________________ 25

Table 2-3 Attributes used in form filters ______________________________________ 27

Table 3-1 Attribute of <table> element _______________________________________ 37

Table 3-2 Attributes of <column> element ___________________________________ 37

Table 3-3 XML elements used __ 39

Table 3-4 Data type mapping between XE and DBMSs ________________________ 44

Table 5-1 Document attributes ___ 55

List of Figures

Figure 1-1 XE request lifecycle ___ 11

Figure 4-1 A form to enter a name ___ 50

Figure 4-2 Display the greeting message _____________________________________ 51

This chapter describes what XE core is, and XE's request lifecycle and directory structure.

1. Understanding XE core

1. Understanding XE core

10 XE Developer Manual

1.1 Overview

XE core represents a framework on top of which developers can build customized applications.

Among the features that come with the core are member management, article and comment

management as well as other features to ease development such as a powerful database

abstraction layer. Also, XE was built using the MVC (Model-View-Controller) architecture for a

clean separation of concerns.

All the incoming requests to an XE application are being handled by index.php. This page is

responsible for initializing the request context, identifying the appropriate module and sending

back a response to the client (browser).

In XE, almost everything is a module. Most core functionality of XE (documents, pages,

modules, addons, etc.) resides in modules that get initialized by XE's core classes.

XE knows what module to be used when a request comes based on two parameters: a module

name and an action name (if these are not given, it fall backs to defaults). For example, to

display an admin page, the URL would be

<root_url>?module=admin&act=dispBoardAdminContent.

In this chapter, you can understand XE's request lifecycle and directory structure which you

need to know in order to extend XE.

1. Understanding XE core

 11

1.2 Request lifecycle overview

The request lifecycle represents the sequence of steps that XE goes through from the moment

when a URL is accessed to the moment when a response is sent back to the client.

You can see an overview of the request life-cycle in the figure below:

Figure 1-1 XE request lifecycle

1. Understanding XE core

12 XE Developer Manual

As you can see, the main steps are:

1. Context initialization

2. Module initialization

3. Running the requested module action

4. Generating response output

Developers can run custom code at certain moments of this lifecycle through the use of

addons. Addons are a type of XE additional features that work through the PHP include

mechanism - code is directly included in the Core methods, thus giving developers full power

to override the context in which requests are handled. For more information about addons and

how to create an addon, see "2.2 Addons".

1.2.1 Context Initialization

Context initialization is handled by the Context class. This class encapsulates the environment

in which XE actions are run. Among its responsibilities are:

• setting context variables in $GLOBALS (to use in display handler)

• including language files according to language types

• setting authentication information in Context and session

• checking if server uses rewrite module

• setting locations for JavaScript use

Context class location: .\classes\context\Context.class.php

1.2.2 Module Initialization

Module initialization is handled by the init() method of the ModuleHandler class. This method

is responsible for:

• executing addons before module initialization (before_module_init hook).

• setting variables from request arguments.

• validating variables to prevent XSS.

• finding the requested module based on module_srl, mid and/or document_srl.

• setting current module info into context.

ModuleHandler class location:.\classes\module\ModuleHandler.class.php

1.2.3 Running the requested module action

All modules are run through the procModule() method of the ModuleHandler class.

• This module executes the addons hooked before module execution (before_module_proc
hook).

• This module executes current module action.

1.2.4 Generating response output

DisplayHandler class is responsible for generating output. Depending on the request type, it

can display either HTML or XML/JSON content. In the case of HTML, this class first retrieves

the appropriate template file and populates it with response values (properties of the

ModuleObject). For XML/JSON the ModuleObject properties are simply serialized as XML/JSON,

without any other formatting.

1. Understanding XE core

 13

1.3 Directory structure

Files and folders below are created after the installation in the root of XE.

Table 1-1 XE directory structure

Folders/Files Description

addons Includes all XE addons.

classes Includes XE core classes.

common Contains static files and templates common to all XE modules. This is also
where the global language files reside.

config Contains default configuration and common function used.

files Is created during installation, and saves uploaded files, internal cache files
and DB & environment configuration files.

layouts Contains all default and custom XE layouts.

libs Includes all libraries used by XE core (e.g. ftp, tar).

m.layouts Includes mobile layouts.

modules Includes all modules (XE core and custom modules).

themes Contains themes (layouts and skins for modules).

widgets Contains all XE widgets.

widgetstyles Contains all widgetstyles required to decorate the widgets.

index.php Contains functions as a gateway for all inputs and outputs in XE.

.htaccess Contains configuration information to use the rewrite mod of Apache Web
Server.

LICENSE Contains the original license of XE.

1.3.1 addons Directory

The addon can be configured simply as active or inactive, and when there is the need for

additional configurations, it can interact with the modules.

Table 1-2 addons directory structure

Folders/Files Description

addons A root folder of addon

 addon_name A folder whose name is the same as the addon's name

 conf Contains configuration information for an addon.

 info.xml Contains description, creator, version and creation date of
an addon.

 addon_name.addon.php Contains an addon's execution code which will be inserted
when the addon is executed.

 queries Contains a collection of queries to be used for an addon.

 queryID.xml A query file. The query schema is the same as the one used
in the module.

For more information, see "2.2 Addons".

1. Understanding XE core

14 XE Developer Manual

1.3.2 classes Directory

This directory contains the library classes commonly used by each component, such as module,

addon, widget, and others in XE.

The default distribution version has the following classes:

Table 1-3 classes directory structure

Folders Description

cache Contains all cache classes that XE core can use (CacheAPC, CacheMemcache,

and CacheHandler). The default class is CacheHandler.

context Contains Context class that manages Context such as request
arguments/environment variables.

db Contains all Databases supported by XE core: CUBRID, MySQL, Firebird,
MySQL Innodb, MySQLi, PostgreSQL, SQLite2, and SQLite3 with PDO.

display Contains classes which are responsible for displaying the execution result
(depending on the request type: HTML, JSON or XMLRPC).

editor Contains an editor handler class.

extravar Contains a class to handle extra variables used in posts, member and others.

file Contains classes which handle the common use with files and folders.

handler Contains an abstract class of (*)Handler.

httprequest Contains a class that is designed to be used for sending out HTTP request to
an external server and retrieving response.

mail Contains a class for mailing.

mobile Contains a class for mobile optimization.

module Contains module handler and module object classes.

object Contains a base class that is designed to pass the Object instance between XE
modules.

page Contains a base class that handles page navigation.

template Contains a class that compiles template file by using regular expression into
PHP code, and XE caches compiled code for further uses.

widget Contains a handler class for widget execution.

xml Contains classes to parse and generate XMLs.

1.3.3 common Directory

This directory contains the resources essential for XE.

Table 1-4 common directory structure

Folders/Files Description

common Contains common JS and CSS files used in XE.

 css Contains common CSS files used in XE.

 default.css Defines basic styles and XE-specific styles.

 button.css Defines basic button styles being used in XE.

 js Contains common JS files used in XE.

1. Understanding XE core

 15

Folders/Files Description

 common.js Defines various types of JavaScript functions being used in XE.

 jquery.js A jQuery (http://jquery.com) file, which is the JavaScript
framework being used in XE.

 js_app.js A JAF file, which is a JavaScript application framework being
used in XE.

 x.js A JavaScript library file for cross-browsing. It is not

recommended to use this file, as it will be removed in the
future.

 xml_js_filter.js An XML JS filter file being used in XE.

 lang Contains the language files supported by XE.

 tpl Contains common layout and template files used in XE.

 common_layout.html A common layout being used in XE.

 default_layout.html An empty layout that only displays contents when there is no
layout skin in use.

 mobile_layout.html A layout used in the XE mobile environment.

 popup_layout.html A layout used when opening a popup window in XE.

 redirect.html A template file used when there is the need to redirect to
another page.

 refresh.html A template file used to refresh.

1.3.4 config Directory

This directory contains the files with the default configuration and the collection of functions

that are frequently used.

Table 1-5 config directory structure

Files Description

config.inc.php Stores XE version and debug configuration for developers.

config.user.inc.php Stores debug configuration, which you need to create manually.

func.inc.php Contains the functions that are frequently used in XE.

1.3.5 files Directory

The file directory is automatically created by XE during installation. It contains cache files,

uploaded files and other files needed by the modules.

Table 1-6 files directory structure

Folders/Files Description

_debug_message.php Displays PHP error messages, database errors and others
based on the value set in ./config/config.inc.php for the
__DEBUG_OUTPUT__ option. This file is deactivated by
default.

 attach Is used for attachments (uploaded files).

1. Understanding XE core

16 XE Developer Manual

Folders/Files Description

 binaries Stores attached files with extension names other than gif,

jpg, jpeg, png, swf and mpeg (a target having directly
spread the contents to fpassthru() to avoid malicious
attacks).

 images Stores image and video files that can be directly accessed
from the browser. The subfolder naming convention
is ./$module_srl/$document_srl/$file_name.

 cache A cache folder

 addon Contains cache files related to an addon.

 mobileactivated_add
ons.cache.php

Contains the PHP code to execute activated addons.
(Mobile environment)

 pcactivated_addons.
cache.php

Contains the PHP code to execute the activated addons.
(PC environment)

 document_category Contains XML and PHP cache files for the document
category.

 editor Contains information cache files of the editor component.

 js_filter_compiled Contains cache files of XE's XML JS filter.

 lang_defined Contains cache files of user-defined language code.

 layout Contains layout cache files of XE. The modified layout

contents will be stored by editing layouts.

 menu Contains XML and PHP cache files for the menu

information created by the menu module of XE.

 module_info Stores information cache files for each of XE modules.

 opage Contains cache files for the external page module of XE.

 optimized Contains optimized cache files to reduce traffic and
increase page loading speed by integrating CSS and JS

files.

 page Contains cache files for page module of XE.

 queries Contains cache files for XML Query compile of XE.

 template_compiled Contains template cache files of XE.

 thumbnails Contains document thumbnail images of XE.

 widget Contains cache files for widget information of XE.

 widget_cache Contains cache files to store and utilize the information of
the created widgets. When the caching time is specified in
the widget, the cache file will be stored.

 triggers Contains cache files for the trigger function of XE.

 widgetstyles Contains cache files to store and utilize the information of
the widgetstyles.

 newest_news.language.c
ache.php

Contains temporarily stored files of the latest news on the
administrator page.

 config Contains configuration information of site administrators

such as DB and FTP.

 db.config.php Contains DB configuration information.

1. Understanding XE core

 17

Folders/Files Description

 ftp.config.php Contains FTP information saving files of the server where

XE is installed.

 lang_selected.info Saves a language list for a certain site that the
administrator wants to work on.

 member_extra_info Contains files used for extra variables of member
information.

 image_mark Contains image files for the marks in front of the
member's name.

 image_name Contains name files for the member's images.

 profile_image Contains profile image files registered by members.

 signature Contains the signatures of members are stored.

 point Contains point scores for each member are stored.

 new_message_flags Contains the location of temporary files whether used to
store new messages from certain members or not.

 agreement.txt Stores the terms and the conditions configured by the
member management module.

 ruleset Contains dynamic ruleset files.

 theme Stores the current theme information.

1.3.6 layouts Directory

The layout is the shell surrounding content (module). The layout can be used by itself or

through interaction with a menu specified by the layout author. You can edit a layout template

file by using Edit Layout in the Layout Management menu.

Table 1-7 layouts directory structure

Folders/Files Description

Layout Name Layout root directory

 conf Contains the configuration file with layout information.

 info.xml Defines layout author, description, additional variables and the

number & name of the interworking menu.

 layout.html Defines the layout template.

1. Understanding XE core

18 XE Developer Manual

1.3.7 modules Directory

Modules directory explanation and directory rules can be found on module directory file

structure.

Table 1-8 modules directory structure

Folders/Files Description

module_name Module root directory named after the module.

 conf Includes module description, action setup and

permission setup.

 info.xml Contains creator information and description of the
module.

 module.xml Contains action module definitions, including

information related to the behavior of the module.

 lang Contains language pack files.

 en.lang.php Contains English language pack.

 schemas Contains database table schema used for module
installation, optional folder used only when the

current module uses a new database.

 table.xml Contains table schema (creating files by using table

names).

 queries Contains XML syntax files for defining queries used
for inserts, selects and updates.

 ruleset Contains ruleset XML files to be used by modules.

 tpl Contains template files that are used for the
administrator view of the module.

 css Contains style sheets.

 images Stores template images.

 js Stores template JavaScript files.

 filter Declares nodes and parameters from forms that will
be passed to processing files (will be covered in

next paragraphs).

 template_files.html Contains skins (including admin screen of a module)

created by using XE template syntax of a screen
with no skin.

 skins Contains skin files that are displayed on the front-
end of the module.

 Skin Name Skin name

 css Contains style sheets.

 images Stores skin images.

 js Stores skin JavaScript files.

 skin.xml Contains skin creator information and extra

variables declaration for skin.

 template_files.html A skin file created by using XE template syntax.

1. Understanding XE core

 19

Folders/Files Description

 module_name.class.php Contains base class of the module which contains

the installation, update and deletion functions.

 module_name.view.php Contains view functions that display the front-end
part of the module.

 module_name.model.php Defines module model class and functions.

 module_name.controller.php A controller for user interface.

 module_name.admin.view.php Contains view class and functions used to display
the back-end part of the module.

 module_name.admin.model.php Declares model class and functions for admin.

 module_name.admin.controller.php Contains controller actions for administration
functions.

 module_name.api.php Similar to the view - it prepares data for display;
more precisely, it usually removes internal data
from the output, can return JSON or XML, used for
instance to create other types of apps, not only
web. e.g. iPhone app.

 module_name.wap.php Contains classes for WAP mobile phones as they
have different outputs.

 module_name.smartphone.php Contains special classes for smart phones, including
iPhones.

For more information, see "2.1 Modules".

1.3.8 themes Directory

Themes are used to manage layouts and module skins, for unified website design.

Table 1-9 themes directory structure

Folders/Files Description

Theme Name Themes root directory

 conf Contains the configuration file which has themes information.

 info.xml Contains creator information and description of the theme,

and definition of skins included in the theme.

 layouts Layout skin root directory

 Layout Name Layout name

 conf Contains the configuration file which has layout information.

 info.xml Contains creator information and description of the layout,
extended variables, and the number of connected menus and

their names.

 layout.html Layout template file

 modules Root directory of a set of module skins

 Module Name Name of the module to which the skin is applied.

 css Style sheet

 images Contains skin images.

1. Understanding XE core

20 XE Developer Manual

Folders/Files Description

 js Contains skin JS files.

 skin.xml Contains skin creator information and declaration of extended
variables of skins.

 template_files.ht
ml

Skin file which is created with XE template syntax.

1.3.9 widget Directory

A widget is a small program displayed on the screen. Some widgets interact with recent posts

or member information (login form), while other widgets communicate with external open

APIs.

The widget folder should be named the same as the widget itself. Widget folder structure is as

follows:

Table 1-10 widget directory structure

Folders/Files Description

Widget Name Widget root folder

 widget_name.class.php The widget's class file - used for processing data and
specifying template files

 conf Configuration folder

 info.xml Defines widget information (name, descriptions) and the
variables available to the widget class

 skins Skin folder

 Skin Name Contains the files for a widget skin; the folder should have

the same name as the skin itself

 skin.xml A configuration file for the information on the names,
description, authors and colorsets of skins.

1.3.10 widgetstyle Directory

This directory contains widgetstyles. Widgetstyles are used to decorate the widget container

and allows the user to change widget appearance such as background, borders and title of a

widget.

Widgetstyles need to use the following folder structure:

Table 1-11 widgetstyle directory structure

Folders/Files Description

widgetstyles Widgetstyles root folder

 Widgetstyle names Name of the widget style

 widgetstyle.html A template file for the widgetstyle.

 skin.xml A configuration file for titles, descriptions, authors and
additional variables of the widgetstyle.

 preview.gif Widgetstyle preview

This chapter describes how to develop XE additional features including modules, addons and widgets.

2. Extending XE

2. Extending XE

22 XE Developer Manual

2.1 Modules

XE is a Contents Management System (CMS) that can be upgraded using different types of

extensions. The most important extension is the Module, which is a collection of files that add

new functionality to the platform.

There are three rules to follow in order to create a minimal working module:

• Module must be a folder under 'modules' directory. Folder name is the same with module
name. Think about a unique name if you want to publish your module, as it may conflict
with other modules named by other developers.

• The info.xml file contains generic information about the author, functionality description
and optional extra variables if the module requires so.

• Module.xml contains configuration parameters, actions definition etc. They are covered
below.

2.1.1 How to create config/info.xml

First, let's give an example on what the file should look like.

<?xml version="1.0" encoding="UTF-8"?>

<module version="0.2">

 <title xml:lang="en">Module name</title>

 <description xml:lang="en">Module description </description>

 <version>1</version>

 <date>2011-05-01</date>

 <category>service</category>

 <author email_address="author@authorland.com" link="http://www.authoria.com/">

 <name xml:lang="en">Author name</name>

 </author>

</module>

The <category> tag refers to the module classification in the admin menu. The options that

can be entered are: service | member | content | statistics | construction | utility | interlock |

accessory | migration | system | package, you can enter.

• service: Services Management

• member: Membership Management

• content: Information Management

• statistics: Statistics View

• construction: Construction Set

• utility: Features Settings

• interlock: Interlocking Set

• accessory: Addons Set

• migration: Data Management / Restoration

• system: System Administration / Settings

• package: Package module such as cafeXE and textyle

2.1.2 Creating actions

In Xpress Engine all inputs and outputs are processed through index.php. The action request

argument is determined by Module Handler and usually the $act variable is used. The actions

of the module are declared in the conf/module.xml file. For a better understanding let's give

an example:

<?xml version="1.0" encoding="utf-8"?>

<module>

 <grants>

 <grant name="post" default="guest">

2. Extending XE

 23

 <title xml:lang="en">Post</title>

 </grants>

 <permissions>

 <permission action="dispForumAdminInsertForum" target="manager" />

 <permission action="dispForumAdminForumInfo" target="manager" />

 <permission action="procForumAdminInsertForum" target="manager" />

 <permission action="procForumAdminInsertListConfig" target="manager" />

 </permissions>

 <actions>

 <action name="dispForumIndex" type="view" />

 <action name="dispForumContent" type="view" index="true"/>

 <action name="dispForumNoticeList" type="view" />

 <action name="dispForumContentList" type="view" />

 <action name="dispForumContentView" type="view" />

 <action name="dispForumCatogoryList" type="view" />

 <action name="dispForumContentCommentList" type="view" />

 <action name="dispForumContentFileList" type="view" />

 <action name="procForumInsertDocument" type="controller" />

 <action name="procForumDeleteDocument" type="controller" />

 <action name="dispForumAdminContent" type="view" standalone="true"

admin_index="true" menu_name="forum" menu_index="true" />

 <action name="dispForumAdminForumInfo" type="view" standalone="true"

menu_name="forum" />

 <action name="dispForumAdminExtraVars" type="view" standalone="true"

menu_name="forum" />

 <action name="dispForumAdminForumAdditionSetup" type="view" standalone="true"

menu_name="forum" />

 <action name="procForumAdminDeleteForum" type="controller" standalone="true"

menu_name="forum" ruleset="deleteForum" />

 <action name="procForumAdminInsertListConfig" type="controller" standalone="true"

menu_name="forum" ruleset="insertListConfig" />

 <action name="dispForumCategory" type="mobile" />

 <action name="getForumCommentPage" type="mobile" />

 </actions>

 <menus>

 <menu name="forum">

 <title xml:lang="en">Forum</title>

 <title xml:lang="ko">포럼</title>

 </menu>

 </menus>

</module>

<action>

The properties used in conf/modules.xml are described in the following table.

Table 2-1 Properties used in actions

Properties Description

name The name of the action that also contains the name of the module.

If the action name contains the string “Admin” then it should have

administrative rights.

type Defines what the type of the action is, and so in what file should be located:
view, model or controller.

If the name contains the string “Admin” then it should be located in the admin

view, model or controller PHP files.

standalone The current action is not dependent on the rest of modules if standalone is set
to "true".

If standalone is set to "false" and the request is not received, the module will

output an error when running. This property will be deprecated.

index Should only be applied to only one action and sets the default action of the

2. Extending XE

24 XE Developer Manual

Properties Description

module.

admin_index Is only applied to one action and represents the default action of the module
back-end.

setup_index Module Settings page is used.

<Permissions ... /> - action permissions

menu_name Name of the menu to which the action belongs.

menu_index If this property is set as "true," it means that this action is the initial action of
the current menu.

ruleset Name of the ruleset to be applied to the action.

action Name of the action for which the permission is being declared.

target The permissions supported are:

 member: Member

 manager: Manager

2.1.3 Using action forward

In general, the actions are owned by XE modules. However there are some cases when an

action is used in various modules. This method is called action forward.

The most typical case is the RSS module. The RSS action is not the action defined by the

board module, but is called and executed by the Action Forward feature.

?mid=board&act=rss

Action Forward can be used to process the module with an independent feature.

In case of the request above, XE looks for a mid called “board”, and in case this mid does not

contain the rss action, XE searches for rss registered through Action Forward table in the

database. Since rss action is registered in DB as the view type of rss modules, XE configures

all mid information for board, and then creates the view object of rss modules to execute the

rss method.

This Action Forward will be needed when XE wants another method while maintaining the

layout or the information of the currently requested module. As another example, the action

to see a friend list works using dispCommunicationFriend action of Communication module.

This action replaces the contents with the friend list while maintaining the layout of the

current module.

In other words, the display of the content area can be changed by the appointed action, and

different results can be induced by the information of the requested module.

Registration of Action Forward

In general, the Action Forward is stored when processing moduleInstall() in the

module.class.php. It can be registered as follows:

$oModuleController = &getController('module');

$oModuleController->insertActionForward('module', 'type(Ex:controller)', 'action_name');

Verification of Action Forward

You can confirm the registration of the Action Forward by using the code below. In general, it

is used in the checkUpdate() method of the module.class.php.

2. Extending XE

 25

$oModuleModel = &getModel('module');

if(!$oModuleModel->getActionForward('action_name')) ...

Deletion of Action Forward

You can delete the Action Forward when it has no use.

$oModuleModel = &getModel('module');

$oModuleModel = &getController('module');

if($oModuleModel->getActionForward('Action Name'))

 $oModuleController->deleteActionForward('Module Name','Type','Action Name');

Otherwise, if an action name does not consist of (disp|proc|get) module name, you will have

to register the Action Forward.

2.1.4 Using triggers

A trigger is used when a module has to provide actions that are already implemented in other

modules. For example in the forum module we want to use a view for the admin that is

already found in triggerDisplayDocumentAdditionSetup of the document module.

For inserting a trigger in the DB:

$oModuleController->insertTrigger('forum.dispForumCommentSetup', 'comment', 'view',

'triggerDispCommentAdditionSetup', 'before');

For getting a trigger:

if(!$oModuleModel->getTrigger('forum.dispForumAdditionSetup', 'document', 'view',

'triggerDispDocumentAdditionSetup', 'before')) return true;

For calling a trigger:

ModuleHandler:: triggerCall ('Trigger Name', 'call time (Called Position)', the trigger

will be used as a parameter of the object);

For deleting a trigger:

$ OModuleController-> deleteTrigger ('Trigger Name', 'module name', 'call the method

belongs to the type of instance', 'call the method (Called Method)' + ',' call time

(Called Position) ');

2.1.5 Using ruleset

Ruleset is used for both client and server sides to check the validity of information when the

information of HTML form is delivered to the processing method of PHP. It is contained in the

XML files in the ruleset directory of each module directory. You can use ruleset as follows:

<?xml version="1.0" encoding="utf-8"?>

<ruleset version="1.5.0">

 <customrules>

 </customrules>

 <fields>

 <field name="user_id" required="true" length="3:20" />

 <field name="user_name" required="true" length="2:40" />

 <field name="nick_name" required="true" length="2:40" />

 <field name="email_address" required="true" length="1:200" rule="email" />

 </fields>

</ruleset>

The elements and properties used in ruleset are described in the following table.

Table 2-2 Elements and properties used in ruleset

Elements Properties Description

customrules Defines custom rules.

 rule Custom rule

2. Extending XE

26 XE Developer Manual

Elements Properties Description

 name Name of custom rule

 type Type of custom rule. You can use one of "regex", "enum"
and "expression".

 "regex": when creating regular expression

 "enum": when selecting only one from given values

 "expression": when an expression is required.

 test Test code for custom rule

fields A set of fields to check the validity.

 field A field to validate.

 name Name of a form element

 rule Rule to apply

 required="true" Means that this field is mandatory.

 length Length of field. You can set the value as
"minimum:maximum."

 default Default value

 equalto Means that the value entered for 'equalto' should be the
same as the one for the current element (like password and
confirmation of password).

 modifier Used to change the value entered before using the rule or
change the result after validation.

For more information, refer to "4 Working with Forms."

2.1.6 Using form filters

The filters are used in XE to pass information from an HTML form to a processing method in

PHP and for specifying JavaScript callback functions. The filters are contained in XML files

inside the tpl folder. For XE 1.5 or higher version, it is recommended to use the ruleset rather

than form filters.

To study better the syntax of filters let's have a look below:

<filter name="insert_contest" module="contest" act="procContestAdminInsertContest"

confirm_msg_code="confirm_submit">

 <form>

 <node target="mid" required="true" maxlength="40" filter="alpha_number" />

 <node target="browser_title" required="true" maxlength="250" />

 </form>

 <parameter>

 <param name="contest_name" target="mid" />

 <param name="module_srl" target="module_srl" />

 <param name="module_category_srl" target="module_category_srl" />

 <param name="layout_srl" target="layout_srl" />

 <param name="skin" target="skin" />

 <param name="browser_title" target="browser_title" />

 <param name="header_text" target="header_text" />

 <param name="footer_text" target="footer_text" />

 </parameter>

 <response callback_func="completeInsertContest">

 <tag name="error" />

 <tag name="message" />

 <tag name="module" />

 <tag name="act" />

 <tag name="page" />

 <tag name="module_srl" />

2. Extending XE

 27

 </response>

</filter>

The following table shows the elements and attributes used in the form filter.

Table 2-3 Attributes used in form filters

Elements Attributes Description

form Verifies the input value.

 node Verifies an HTML form.

 required Checks if the current input element is a required value. If it

is set as 'true' and a value is not entered for the element,
an alert is generated.

 filter = "filter type" The types you can use for the filter are email
(email_address), userid (user_id), url (homepage), korean,
korean_number, alpha, number, and alpha_number.

 equalto = "target
person"

Means that the value entered for 'equalto' should be the
same as the one for the current element (like password and
confirmation of password).

 maxlength Maximum length

 minlength Minimum length

parameter Changes the name of a form element to be sent to the
server or sends the value entered for the parameter only to

the server. If you don't use this element, all the form

elements are sent to the server by default.

 param Writes information for the form element which you want to
re-define or send to the server.

 name Form element name

 target Element name to re-define

response

 callback_func JavaScript callback function. This attribute must be actually
implemented.

 tag Defines a variable to be passed to the callback function.

 name A name of the variable to be added to the arguments of the

callback function. The variables are used to execute the
action in the controller and implement the values to be
passed to the callback function with $this->add('variable
name', 'value')

For more information, see "4 Working with Forms".

2.1.7 Defining database queries

XE uses a custom query language in order to define queries. The XML code is parsed by the

XmlQueryParser.class.php that resides in the folder ./classes/xml. For example:

<query id="getCounterStatus" action="select">

<tables>

<table name="counter_status" />

</tables>

<columns>

<column name="sum(unique_visitor)" alias="unique_visitor" />

<column name="sum(pageview)" alias="pageview" />

</columns>

2. Extending XE

28 XE Developer Manual

<conditions>

<condition operation="more" column="regdate" var="start_date" notnull="notnull"pipe="and"

/>

<condition operation="less" column="regdate" var="end_date" notnull="notnull"pipe="and"

/>

</conditions>

</query>

2. Extending XE

 29

2.2 Addons

In Xpress Engine, an addon performs hooking, which is an action that grabs other normal

actions.

Hooking uses the 'include,' which is available in interpreter-based languages such as PHP. The

exclusion of addons in the form of a function or a class in XE was intentional, to allow them to

be inserted to the normal Context of XE as native code. For this reason, the addons of XE can

be used to powerful effect from the moment they are called. However, they must be created

with caution so as not to overload the overall operation of XE.

The following are the minimum rules that must observed when creating an addon:

• Location: addons/addon_name

• Addon operation file: Addon_name.addon.php

• The info.xml file in which the creator information, description of the addon and the addon
variable from an administrator (when necessary) are to be stored.

2.2.1 When to Call Addons

The four points of time at which an addon can be called are as follows:

• before_module_init - before creating a module object: After finding a necessary module
upon a user request and before creating the object of that module.

• before_module_proc − before executing a module: After initializing the object of a module

and before executing the module.

• after_module_proc − after executing a module: Immediately after executing a created

module object and obtaining the result.

• before_display_content − before displaying result: Immediately before displaying the
result of a module to which a layout has been applied.

To better understand what these hooks really mean, and why some addons use only specified

moments in the Xpress Engine control path let's give some practical examples.

Tag list - After module proc

Let's take an addon that will display the list of tags of all documents on a page. For the tag list

to be generated we need to first get the documents which have the module_srl of the current

page. In order to do this we need to get the module_srl. For this to be possible we have to

choose as called position the after_module_proc . After the module information is being

processed all of the operations defined previously are viable.

Meta Tag - Before module proc

This addon will have the role to insert in every page meta tags, including meta description,

meta keywords, meta author, etc. The addon will use the before_module_proc position as a

hook because it needs to insert the meta tags before the content is generated in the module

processing operation.

Point Level Icon- before display content

We need an addon that will display an icon for each user depending on the point level that the

specified member accumulated. This addon will use the before_display_content position as a

hook because it has to replace some HTML code inside the content depending on some

parameters that were already processed.

2. Extending XE

30 XE Developer Manual

Counter- Before Module Init

This addon was developed to make a statistic of visits on a website built with Xpress Engine.

It uses of course the counter module. The counter addon just uses the information in the

$is_logged variable to count the number and visits. In order to do this the module uses

before_module_init, the first chronological hook, because it doesn't need any more

information from the module processing operation.

2.2.2 Variables to Be Passed When Calling an Addon

The following common variables can be transferred to an addon at the four calling points.

• $called_position: Contains the information of the time of calling. It can have one of the
following four values: before_module_init, before_module_proc, after_module_proc, or
before_display_content.

• $addon_path: Contains the path of the called addon.

• $addon_info: The addons of XE can be configured independently, and they can specify a
target module in which they will be operated. The $addon_info variable contains the
information of extra_vars in info.xml declared by an addon, and such information defers

depending on each addon.

2.2.3 Creating an addon

The 'addons' directory may include files with different names. Classes can be used in the

directory. However, the declaration of a function is not allowed because it uses the include

structure to be operated as native code.

config/info.xml

To create an info.xml file, use the following code:

<?xml version="1.0" encoding="UTF-8"?>

<addon version="0.2">

 <title xml:lang="en">Addon title</title>

 <description xml:lang="en">Addon description</description>

 <version>Addon version</version>

 <date>Year-Month-Date</date>

 <author email_address="The email address of an author" link="The homepage address of an

author">

 <name xml:lang="en">Author name</name>

 </author>

 <extra_vars>

 <var name="Variable name" type="textarea">

 <title xml:lang="en">Variable name (for output)</title>

 <description xml:lang="en">Variable description</description>

 </var>

 </extra_vars>

</addon>

Create extra_vars if necessary. Omit the details if there aren't any, by using the

"<extra_vars/>" command. Save the file above as info.xml, and move it to the conf/info.xml

directory.

addon_name.addon.php

Create an addon file in PHP if it is intended to perform any actions. However, functions cannot

be declared, as an addon is usually called within the method of a class object. Note that you

can define and utilize classes in an addon.

The beginning section of any addon file should look like the following:

 <?php

 /**

2. Extending XE

 31

 * @file addon name.addon.php

 * @author author name (email address)

 * @brief description

 **/

 if(!defined('__ZBXE__')) exit();

Double-check the __ZBXE__ constant so that it will not be executed by an external request; it

must be called by XE. That is, XE additional features check if the __ZBXE__ constant is set as

'true' before executed. The actions of an addon can be controlled by called_position; this must

be done manually in the addon.

Let's take for example an addon that displays the tag list of all documents at the bottom of

the page. Firstly we have to establish what the proper hook for us to call the addon. In order

for us to get the list of documents, the page module has to be processed so we are going to

use 'after_module_proc' like in the following code:

<?php

if(!defined("__ZBXE__")) exit();

/**

* @file tag_list.addon.php

* @author Author (author@authorland.com)

* @brief Description of the addon

**/

if($called_position != 'after_module_proc' || Context::getResponseMethod()!=='HTML')

return;

$obj->module_srl=Context::get('module_srl');

$document_list=executeQueryArray('addons.tag_list.getModuleDocumentTags',$obj);

$tags='';

foreach ($document_list->data as $val) {

 $tags=$tags.','.$val->tags;

}

$tags=explode(',', $tags);

for($i=1;$i<count($tags);$i++) {

 $tags[$i]=''.$tags[$i].'';

}

$tags=implode(' ', $tags);

$tags='<div class="tags" align="center">'.$tags.'</div>';

$content=Context::get('page_content');

$content=$content.$tags;

Context::set('page_content',$content);

?>

In the above example, we insert the tag list code to the current HTML page.

2.2.4 How to Use XE XML Query

In XE Addon, the data in a DB that has been created by another module can be utilized by

using XML Query.

In this case, make a subdirectory named 'queries' under the 'addon' directory, and save an

XML file in which XML query statements are defined. The query can be executed like in the

example above:

$document_list=executeQueryArray('addons.tag_list.getModuleDocumentTags',$obj);

2.2.5 What to Consider When Creating Addons

The considerations to create an addon are listed below:

• Make sure that there is no space before or after <?php ... ?>, because the addons of XE
will be inserted into many parts of all modules. If there is any space, malfunction will occur

even when before_display_content is called.

2. Extending XE

32 XE Developer Manual

• The XE core does not separately handle exceptions that may occur while programming
addons. Therefore, the routine to check the current call situation must be well-established
to prevent such conflicts from occurring.

• If a serious error occurs on the Web site due to erroneous addon coding, edit the

files/cache/activated_addons.cache.php file and upload it again.

XE Addon can perform powerful actions. However, the inappropriate use of code may result in

an unintended outcome or may even stop XE. It is recommended to refer to the default

addons.

2. Extending XE

 33

2.3 Widgets

Widgets are components used to display data on screen. Widgets can work together with

existing modules - such as recent posts, member profiles - or extract data from external APIs.

Widgets can be added on any page or directly in layouts and allow for easy customization of

the content displayed.

Widgets are manually entered by the administrator on the page module and are stored in

 tags. When calling a web page to be display, the trigger

widgetController::triggerWidgetCompile() executes the code between tags using

widgetproc() and transforms it into the correct html code.

2.3.1 Creating config/info.xml

The info.xml file holds information about the widget author, version and other configuration

variables.

<?xml version="1.0" encoding="UTF-8"?>

<widget version="0.2">

 <title xml:lang="en">Widget title</title>

 <description xml:lang="en">Widget description</description>

 <version>Widget version</version>

 <date>Widget creation date</date>

 <author email_address="..." link="...">

 <name xml:lang="en">Author name</name>

 </author>

 <extra_vars>

 <var id="extensionVariableName">

 <name xml:lang="en">Extension variable name</name>

 <type>Type of extension variable: text | textarea | select | select-multi-order

| mid | mid-list | menu </type>

 </var>

 </extra_vars>

</widget>

2.3.2 Creating widget class

What a widget does is implemented in a class file named widgetName.class.php. All classes

that implement a widget must inherit from WidgetHandler and must implement the proc()

method:

<?php

class myWidget extends WidgetHandler {

 function proc($args) {

 // .. Widget implementation ..

 // Template, specify the path of the skin (skin, colorset according to the

value)

 $tpl_path = sprintf('%sskins/%s', $this->widget_path, $args-> skin);

 Context::set ('colorset', $args->colorset);

 // Template file name

 $tpl_file = 'HTML template file except the extension ';

 // Template compilation

 $oTemplate = &TemplateHandler::getInstance();

 return $oTemplate->compile($tpl_path, $tpl_file);

 }

}

?>

2. Extending XE

34 XE Developer Manual

2.3.3 Extra Vars

These are variables that a widget uses to get data in the admin part of the widget just before

inserting the widget into a page. For each of these variables you can set the type of input to

get their value which will be automatically created on the page:

• text: Generic text type

• textarea: Text type containing paragraphs

• select: Select one from several items

• select-multi-order: Used to select one from several items and change the order of them as
in the following figure.

• mid: Select only one module.

• mid_list: Select multiple modules.

• menu: Select one of the site menus

This chapter describes how to work with the database.

3. Working with DB

3. Working with DB

36 XE Developer Manual

3.1 Introduction

XE has a database-agnostic database abstraction layer. This means that you can use XE with

many different database management systems and you can easily switch your XE from one

provider to another. XE supports MySQL, MS SQL, CUBRID, Postgres, SQLite3 and Firebird.

To handle this, you write the entire database schema and the queries in XML - using XE's XML

Schema Language and XML Query Language.

Here is an example of an XML Schema file:

Excerpt from ./modules/member/schemas/member.xml

<table name="member">

 <column name="member_srl" type="number" size="11" notnull="notnull"

primary_key="primary_key" />

 <column name="user_id" type="varchar" size="80" notnull="notnull"

unique="unique_user_id" />

 <column name="find_account_question" type="number" size="11" />

 <column name="allow_mailing" type="char" size="1" default="Y" notnull="notnull"

index="idx_allow_mailing" />

 <column name="limit_date" type="date" />

 <column name="regdate" type="date" index="idx_regdate" />

 <column name="description" type="text" />

 <column name="list_order" type="number" size="11" notnull="notnull"

index="idx_list_order" />

</table>

If there is a table.xml in the modules included when you first installed XE, the table will be

automatically created. If there is a table.xml when you install additional modules after the

installation of XE, you can see Install Module button on the admin page. You can then create

queries for this table through XML files:

#./modules/member/queries/getMemberInfo.xml

<query id="getMemberInfo" action="select">

 <tables>

 <table name="member" />

 </tables>

 <columns>

 <column name="*" />

 </columns>

 <conditions>

 <condition operation="equal" column="user_id" var="user_id" notnull="notnull" />

 </conditions>

</query>

Calling this query from PHP is as simple as:

 $args->user_id = $user_id;

 $output = executeQuery('member.getMemberInfo', $args);

3. Working with DB

 37

3.2 XML Schema Language Reference

The schema of XE's database tables is defined through XML files. These are found inside the

schemas folder of each module.

An XML schema file consists of one root <table> tag and one or more children <column> tags.

Here are the attributes you can use with each tag:

Table 3-1 Attribute of <table> element

Attribute Description

name Name of the table to be created. The table prefix (xe_) will be automatically
added and doesn't need to be specified.

Note: this has to be the same as the name of the XML file.

Table 3-2 Attributes of <column> element

Attributes Description

name Name of the column.

type Data type that the column will store. Has to be one of:

 number

 bignumber

 varchar

 char

 text

 bigtext

 date

 float

The parser will automatically map this data type to a database-specific data
type. For instance, bignumber corresponds to bigint in MySQL.

Read more about how each data type is mapped to database specific data
types, see "Table 3-4 Data type mapping between XE and DBMSs".

size Defines the size of the column. This is used for numeric or character types.

For numeric: it can represent the precision.

For character: it represents the number of characters that the string can
hold.

default Specifies a default value for the column.

notnull Specifies whether column allows null values.

If a column allows null values, just omit this attribute. Otherwise, add it

like this:

e.g.) notnull = "notnull"

primary_key Specifies if this column should be used as a primary key for the table. You
can set primary_key="primary_key" for each column to bind the two
attributes into

primary_key.

3. Working with DB

38 XE Developer Manual

Attributes Description

index Creates an index for the column. The value represents the name of the

index to be created.

If the value is used in more than one column, a combined index will be
created.

e.g.) index="idx_list_order"

unique Creates a unique index for the column. The value represents the name of
the index to be created.

auto_increment Specifies if column value should be auto incremented.

e.g.) auto_increment="auto_increment"

3. Working with DB

 39

3.3 XML Query Language

Xpress Engine does not use direct SQL queries. Instead, database queries are written in XML

in order to support a variety of DBMSs.

3.3.1 How to use

XML Query can be used in modules, addons, widgets and others as follows:

$args->name = "zero";

$output = executeQuery("member.getMemberInfo", $args);

The executeQuery() function is the alias for the DB::executeQuery() function

in ./classes/db/DB.classs.php. This function manipulates the actual DB data and receives the

output after the XML Query is parsed as native SQL according to the database used.

function executeQuery($xml_query_name, $args = null);

• The first parameter is the name of the XML Query to be executed. The name is decided
according to module name and query ID.

• The second argument is a type of stdClass and is used to pass extra data to the query.
This parameter can be null.

• The result is returned as an object of the object class.

− A query failure can occur when $output->toBool() is FALSE, but if it's TRUE, it means

the query has been normally executed.

− The result data of a select statement is put in $output->data variable and returned.

3.3.2 XML elements used

<query id="query_id" action="select|update|delete|insert">

 <tables>

 <table name="tableName" alias="alias" />

 </tables>

 <columns>

 <column name="columnName" alias="alias" />

 </columns>

 <conditions>

 <condition operation="doSomething" column="column1" var="variable"

filter="filterType" default="default" notnull="notnull" minlength="minimumLength"

maxlength="maximumLength" pipe="TheConcatenationOperator "/>

 <group pipe="pipe">

 <condition operation="anotherOperation" column="column" var="variable"

filter="filterType" default="default" notnull="notnull" minlength ="minimumLength"

maxlength="maximumLength" pipe="TheConcatenationOperator"/>

 </group>

 </conditions>

 <navigation>

 <index var="var" default="default" order="desc|asc" />

 <list_count var="var" default="default" />

 <page_count var="var" default="default" />

 <page var="var" default="default" />

 </navigation>

 <groups>

 <group column="GroupBy daesang" />

 </groups>

 </query>

The following table shows the XML elements and attributes used in the XML queries.

Table 3-3 XML elements used

Elements Attributes Description

<query> Query XML's root element

3. Working with DB

40 XE Developer Manual

Elements Attributes Description

 id ID for searching the query. Use module.query_id to search and u

se query XML files.

 action There are four types of actions, which are select, update, delete
and insert.

 alias Alias name of the query statement when using a subquery.

<tables> Joining tables allows the use of multiple <table>.

 name Original table name (Ignore the prefix in ZeroBoardXE)

 alias When the original table name is changed and used for join or oth
er services.

<columns> Columns to be used in the query.

 name Column name

 alias Specifies when you want to change it to another name

<conditions> It is used to form a conditional clause. If you want conditional cl
auses to be multiple groups, you can bind them by using <group
> tags.

<group> ...

</group>

 When conditional clauses are used as groups, you can specify th
e conditions between the groups by using pipe="and|or"

<condition> Creates a conditional clause.

 operation Its operation is processed by the operators below:

 equal : column = (var|default)

 more : column >= (var|default)

 excess : column > (var|default)

 less : column <= (var|default)

 below : column < (var|default)

 notequal : column != (var|default)

 notnull : column is not null

 null : column is null

 like_prefix : column like '%var|default'

 like_tail : column like 'var|default%'

 like : column like '%var|default%'

 in : column in (var|default)

 notin : column not in (var|default)

 column Specifies the column name.

 var Specifies the key value of the second parameter in the executeQ

uery() function.

3. Working with DB

 41

Elements Attributes Description

 filter Filters the condition of the var value. Supports the following

filters:

 email, email_address: mail format

 homepage: homepage format such as http|https://

 userid, user_id: user id format of XE zeroboard (The first
two characters must be alphabet. From third characters, it
must be the number+alphabet+ _ format.)

 number: numbers allowed

 alpha: alphabetical characters allowed

 alpha_number: both numbers and alphabetical characters al
lowed

 default It will be replaced with the default value when the var value is
null. The following function values are available:

 ipaddress(): IP address

 unixtime(): Unix time (time() function in php)

 curdate(): YYYYMMDDHHIISS

 plus(int count): column = column + count

 minus(int count): column = column – count

 multiply(int arg): column = column * arg

 sequence(): Executes getNextSequence() of XE.

 notnull Does a not null check.

 minlength Checks the minimum length.

 maxlength Checks the maximum length.

 pipe Specifies the condition, such as and|or.

<navigation> Navigation supports the sort order (order by) or paging.

<index> Specifies the columns to be sorted and the sorting methods.

 var A variable that contains the column names

 default A column name to sort by default; in case that the var value is n
ot specified.

 order asc|desc

<list_count> Makes it possible to receive the results of paging.

 var Rows of list

 default A default rows value when the var value is not specified.

<page_count> Specifies the number of navigations on the bottom page when ca
lculating paging.

 var The number of paging navigations

 default The number of default paging navigations when the var value is
not specified.

<page> Specifies the current page number.

 var A variable to specify the n-th page

 default A default page number used when a var value is not specified.

<groups> Enables the use of the group by clause.

3. Working with DB

42 XE Developer Manual

Elements Attributes Description

 column The name of group by column.

3.3.3 Examples of using XML subquery

In XE 1.5 or higher version, you can use a subquery. The following examples show how to

create a subquery for each type.

SELECT statement

Using SQL

select *,

(select count(*) as "count"

 from "xe_documents" as "documents"

 where "documents"."user_id" = "member"."user_id"

) as "totaldocumentcount"

 from "xe_member" as "member"

 where "user_id" = 7

Using XML subquery

<query id="getStatistics" action="select">

 <tables>

 <table name="member" alias="member" />

 </tables>

 <columns>

 <column name="*" />

 <query id="getMemberDocumentCount" alias="totalDocumentCount">

 <tables>

 <table name="documents" alias="documents" />

 </tables>

 <columns>

 <column name="count(*)" alias="count" />

 </columns>

 <conditions>

 <condition operation="equal" column="documents.user_id"

default="member.user_id" />

 </conditions>

 </query>

 </columns>

 <conditions>

 <condition operation="equal" column="user_id" var="user_id" notnull="notnull" />

 </conditions>

</query>

WHERE clause

Using SQL

SELECT *

FROM xe_member as member

WHERE regdate = (SELECT MAX(regdate) as regdate

 FROM xe_documents as documents

 WHERE documents.user_id = member.user_id)

Using XML subquery

<query id="getMemberInfo" action="select">

 <tables>

 <table name="member" alias="member" />

 </tables>

 <columns>

 <column name="*" />

 </columns>

 <conditions>

 <query operation="equal" column="regdate" notnull="notnull">

alias="documentMaxRegdate">

3. Working with DB

 43

 <tables>

 <table name="documents" alias="documents" />

 </tables>

 <columns>

 <column name="max(regdate)" alias="maxregdate" />

 </columns>

 <conditions>

 <condition operation="equal" column="documents.user_id"

var="member.user_id" notnull="notnull" />

 </conditions>

 </query>

 </conditions>

</query>

FROM clause

Using SQL

SELECT m.member_srl, m.nickname, m.regdate, a.count

FROM (

 SELECT documents.member_srl as member_srl, count(*) as count

 FROM xe_documents as documents

 GROUP BY documents.member_srl) a

 INNER JOIN xe_members m on m.member_srl = a.member_srl

Using XML subquery

<query id="getMemberInfo" action="select">

 <tables>

 <table query=”true” alias="a">

 <table>

 <table name="documents" alias="documents" />

 </table>

 <columns>

 <column name="member_srl" alias="member_srl" />

 <column name="count(*)" alias="count" />

 </columns>

 <groups>

 <group column="member_srl" />

 </groups>

 </table>

 <table name="member" alias="m" type="inner join">

 <conditions>

 <condition operation="equal" column="m.member" default="a.member_srl" />

 </conditions>

 </table>

 </tables>

 <columns>

 <column name="m.member_srl" />

 <column name="m.nickname" />

 <column name="m.regdate" />

 <column name="a.count" />

 </columns>

</query>

3. Working with DB

44 XE Developer Manual

3.4 Data Type Mapping

The following table shows the data type mapping between XE and each DBMS.

Table 3-4 Data type mapping between XE and DBMSs

XE MySQL CUBRID MS SQL

number bigint integer int

bignumber bigint numeric(20) bigint

varchar varchar character varying varchar

char char character char

text text character varying(1073741823) text

bigtext longtext character varying(1073741823) text

date varchar(14) character varying(14) varchar(14)

float float float float

tinytext character varying(256)

3. Working with DB

 45

3.5 XML Query Parser

The XML Query Parser class receives an XML Query file as input, parses it, and generates a

PHP file containing related class objects of all the info that is necessary for creating an SQL

query (the type of query - select, update, insert, delete -, the expressions used, the join and

filtering conditions, the group by and order by clauses). This PHP file is then used as input for

each of the DB classes, which will create specific SQL for each DBMS (using the appropriate

escape characters and custom language constructs).

For example, say we have the following XML query:

./modules/document/queries/getCategory.xml

<query id="getCategory" action="select">

 <tables>

 <table name="document_categories" />

 </tables>

 <conditions>

 <condition operation="equal" column="category_srl" var="category_srl"

filter="number" notnull="notnull" />

 </conditions>

</query>

When the query is called (using the executeQuery function) the engine checks to see if the

corresponding PHP file was created, and if not invokes the XML Query Parser class, generates

the PHP file and saves it under ./files/cache/queries.

./files/cache/queries/document.getCategory.1.5.0.8.cache.php

<?php if(!defined('__ZBXE__')) exit();

$query = new Query();

$query->setQueryId("getCategory");

$query->setAction("select");

$query->setPriority("");

$category_srl1_argument = new ConditionArgument('category_srl', $args->category_srl,

'equal');

$category_srl1_argument->checkFilter('number');

$category_srl1_argument->checkNotNull();

$category_srl1_argument->createConditionValue();

if(!$category_srl1_argument->isValid()) return $category_srl1_argument->getErrorMessage();

if($category_srl1_argument !== null) $category_srl1_argument->setColumnType('number');

$query->setColumns(array(

new StarExpression()

));

$query->setTables(array(

new Table('`testtesttest_document_categories`', '`document_categories`')

));

$query->setConditions(array(

new ConditionGroup(array(

new ConditionWithArgument('`category_srl`',$category_srl1_argument,"equal")))

));

$query->setGroups(array());

$query->setOrder(array());

$query->setLimit();

return $query; ?>

Then, the database specific executeQuery method is invoked and the output of the file above

will be used as input to that method. The DB class generates the sql query and executes it.

For instance, for the query above, the SQL will be:

select * from "xe_document_categories" as "document_categories" where ("category_srl" =

15)

You can see that the cache.php file also contains information about the column types. This info

is extracted from the table schema files. XE first searches for the schema file

inside ./modules/<module_name>/<table_name> and if none is found, it looks inside each

module for a file named <table_name> until one is found.

3. Working with DB

46 XE Developer Manual

3.6 XE Database Classes

XE has a custom class for every DMBS it supports. They are the ones responsible for

generating custom SQL syntax for each DBMS.

For example, the classes that come with XE core are:

DB.class.php

DBMysql.class.php

DBCubrid.class.php

DBMssql.class.php

….

All these are stored under ./classes/db.

All custom DB classes inherit from a common DB class. In your code, you will only use the

generic DB class and XE can figure out at runtime what DB class implementation to use.

This chapter describes how to work with forms.

4. Working with Forms

4. Working with Forms

48 XE Developer Manual

4.1 Introduction

A form is used to send a user input to the server. In addition to the general form submission,

XE supports a ruleset to check the validity of the input values for form submission. With this

ruleset function, you don't have to create a script to verify input values.

In XE, all form submission is handled through AJAX calls. This means that for each form we

need:

• the form markup and design

• a server side method to be called on form submission

The XE parts that work together for this are:

• The form template file: defines the layout and fields of the form

• The controller method that will handle the form submission (inside the controller file)

• The ruleset XML file to validate forms

4. Working with Forms

 49

4.2 Example of XE Form

The form we are going to build is very simple - the user will be asked to enter his name and

then the page will greet him by it. The module will have only one view - that will display the

hello message after the user entered his name or a form for entering the name otherwise.

You can download a working version of the module: hello.zip. In order to follow the tutorial

you should download just the start files: hello-tutorial.zip.

4.2.1 Creating the form view

Let's first create the look of the form - it will contain only an input box and a submit button.

Name the file name.html and place it under ./modules/hello/tpl/.

 <h1>Enter your name:</h1>

 <form id="name_form" action="./" method="post" ruleset="say_hello">

 <input type="hidden" name="module" value="hello" />

 <input type="hidden" name="act" value="procHelloGreet" />

 <input type="text" name="name" id="name" value="" />

 <input type="submit" value="OK" />

 </form>

To submit forms in XE, you need to specify the module and the action to be used to submit

data, and set the ruleset to validate the data. In the example above, 'procHelloGreet' action of

'hello' module is used to submit data, and 'say_hello' ruleset file is used to validate the data.

Note

The ruleset property of the form element is the name of ruleset file to be applied. Attaching '@' to the property

value means that it should refer to the ruleset created dynamically in XE. For example, XE 1.5 needs users to

select user_id or email_address as a login account. In this case, the dynamic ruleset is required since the method

to validate login data should differ depending on the login account type. The dynamic ruleset file is saved in

the files/ruleset directory.

Let's create a view method for displaying the template file.

Inside ./modules/hello/hello.view.php add the following method:

 /**

 * @brief Display form for entering a name

 **/

 function dispHelloName() {

 $this->setTemplateFile('name');

 }

Then, let's make it available to end-users by listing it inside ./modules/hello/conf/module.xml:

<?xml version="1.0" encoding="utf-8"?>

<module>

 <grants />

 <permissions />

 <actions>

 <action name="dispHelloName" type="view" standalone="true" index="true" />

 </actions>

</module>

You should now be able to see the form by accessing /?module=hello:

http://doc.xpressengine.com/manual/hello.zip
http://doc.xpressengine.com/manual/hello-tutorial.zip

4. Working with Forms

50 XE Developer Manual

Figure 4-1 A form to enter a name

4.2.2 Adding the XML ruleset file and the controller action

Right now our form doesn't do anything, so let's add a method for retrieving the username

and displaying the hello message.

Inside ./modules/hello/hello.controller.php add the following method. Using the ruleset file,

you need to specify the next action to be executed. In the following example, we used

setRedirectUrl to redirect to dispHelloName page after procHelloGreet is executed.

 /**

 * Action for handling the name input form submission

 * Retrieves the name given by the user and passes it on for displaying the greeting

screen

 */

 function procHelloGreet(){

 $name = Context::get('name');

 $this->setRedirectUrl(getNotEncodedUrl('', 'module', 'hello', 'act',

'dispHelloName', 'name', $name));

 }

Then, make it known by adding this line, inside ./modules/hello/conf/module.xml under the

<actions> tag:

<action name="procHelloGreet" type="controller" standalone="true" />

In order for XE to validate the form data, we need to add an XML ruleset file. Name it

say_hello.xml and place it under ./modules/hello/ruleset:

<?xml version="1.0" encoding="utf-8"?>

<ruleset version="1.5.0">

 <fields>

 <field name="name" required="true" />

 </fields>

</ruleset>

For more information on the elements and attributes used in the ruleset file, see "2.1.5 Using

ruleset"

4.2.3 Showing the greeting message

Update the dispHelloName method, inside ./modules/hello/hello.view.php:

 /**

 * @brief Display form for entering a name

 **/

 function dispHelloName() {

 $name = Context::get('name');

 if(isset($name)){

4. Working with Forms

 51

 $hello_message = "Hello " . $name;

 Context::set('hello_message', $hello_message);

 }

 $this->setTemplateFile('name');

 }

Now, let's also update the name template file (./modules/hello/tpl/name.html):

<h1 cond="isset($hello_message)">{$hello_message}</h1>

<block cond="!isset($hello_message)">

 <h1>Enter your name:</h1>

 <form id="name_form" action="./" method="post" ruleset="say_hello">

 <input type="hidden" name="module" value="hello" />

 <input type="hidden" name="act" value="procHelloGreet" />

 <input type="text" name="name" id="name" value="" />

 <input type="submit" value="OK" />

 </form>

</block>If you reload the page in the browser, you should now see the greeting message:

Figure 4-2 Display the greeting message

This is it!

This chapter describes how to use the document module which is basically provided by XE.

5. Using Document Module

5. Using Document Module

54 XE Developer Manual

5.1 Introduction

XE was built with a modular structure in mind. This way, you can easily extend its core

functionality while taking advantage of the existing building blocks.

Among the most important bricks when building your own additional features are the

document module. This is the recommended module you should use when creating custom

modules that work with content.

Some of the features that come bundled with this are:

• built-in functions for creating and retrieving content

• information about number of comments, number of views and other useful statistics

• revision history

• ability to easily organize content - through categories or tags

• batch editing

• easy integration with other modules in XE

To better grasp how you can take advantage of these modules, you should take a look at the

forum, wiki, textyle and issue tracker modules - they all use documents to store their content.

5. Using Document Module

 55

5.2 Document Module

5.2.1 Creating documents

The method for creating documents is in the documentController -

 .\modules\document\document.controller.php . Here is an example of creating one:

$obj->title = "My sample document";

$obj->content = "Hello World!";

$obj->tags = "demo, hello";

$document_srl = getNextSequence();

$obj->document_srl = $document_srl;

$obj->module_srl = $this->module_srl;

$obj->allow_comment = 'Y';

$obj->allow_trackback = 'Y';

$oDocumentController = &getController('document');

$output = $oDocumentController->insertDocument($obj);

All documents are stored in the [DB flag]_documents table. Besides the default fields, you can

easily add your own custom fields with the extra_vars feature. These represent attributes that

can be associated to all documents belonging to a certain module type, so that just your

custom documents share them.

The name of the custom fields and info about their type is stored in the [DB

flag]_document_extra_keys table. You can add new keys using the insertDocumentExtraKey

method in the documentController. The values of the new keys are stored in the [DB

flag]_document_extra_vars table. In order to add these you can use the

insertDocumentExtraVar method o the documentController class.

5.2.2 Document attributes

The following table describes the document attributes.

Table 5-1 Document attributes

Attributes Description

document_srl Represents the unique ID of a document.

module_srl Represents the module instance that the document is linked to.

category_srl Represents the ID of the document category (document categories are
stored in the [DB flag]_document_categories table).

lang_code Language code of the document - this is for having different versions of the
same document in different languages.

is_notice Marks a document as being important. You can use this attribute for
displaying notices at the top of a document list, for instance.

title Document title

content Document content

readed_count Number of times that the document has been viewed.

voted_count Number of votes the document received. This is achieved through integration
with the point module.

blamed_count Number of times the document has been marked as inappropriate.

comment_count Number of comments associated to the document.

trackback_count Number of trackbacks for the document.

uploaded_count Number of attachments of the document.

5. Using Document Module

56 XE Developer Manual

Attributes Description

document_srl Represents the unique ID of a document.

password Used for secret documents, to allow access to a document only to the users
who know the password.

user_id,
user_name,

nick_name,
member_srl

Information on the document owner

tags Document tags, stored as comma separated values.

regdate Date when the document was created.

last_updated Date when the document was last modified.

ipaddress IP address of the user who created the document.

comment_statu
s

Whether to allow comments to the document (ALLOW: allow comments,
DENY: not allow comments)

status Document status (PRIVATE: private, PUBLIC: public, SECRET: secret, TEMP:
temporarily saved)

These attributes represents the fields of [DB flag]_documents table. The model class of

document is document.item.php.

5.2.3 Document URLs

Documents can be accessed in many ways.

First of all, they all expose a permalink with the following structure.

http://<xe_name>/<document_srl>

There is also a more user friendly name of accessing any document in XE:

http://<xe_name>/entry/<document_title>

If the document title is very long or contains spaces, you can always define a document alias

by selecting Contents > Document from Dashboard. A document can have more than one

alias. The URL structure for accessing a document by its alias is:

http://<xe_name>/entry/<alias>

Besides these built-in ways to access a document, you can define your own view methods in

your custom module.

Note

The examples above are available only when the mod_rewrite is enabled.

5.2.4 Document categories

Each document can belong to a category. Categories are saved in the [DB

flag]_document_categories table and can be either hierarchical or nonhierarchical.

Managing categories is done through the documentController and documentModel class.

documentController contains following methods related to managing categories:

• insertCategory

• deleteCategory

• moveCategoryUp

5. Using Document Module

 57

• moveCategoryDown

• procDocumentMoveCategory

• updateCategory

• updateCategoryCount

documentModel contains following methods related to managing categories:

• getCategory

• getCategoryChildCount

• getCategoryDocumentCount

• getCategoryHTML

• getCategoryList

• getDocumentCategories

• getCategoryTplInfo

5.2.5 Document revision history

The document module has a mechanism for keeping the revision history of documents. On

each update, a log entry is added automatically by the updateDocument method of the

documentController class.

By default, revision history is disabled. In order to enable it, you need to check the Use

History option from the document partial configuration page.

Revision history is saved in the [DB flag]_document_histories table. In order to retrieve the

log for a document you can use the following methods from the documentModel class:

• getHistories

• getHistory

5.2.6 Retrieving documents

The method used for searching through documents is getDocumentList from the

documentModel. This allows you to filter documents based on:

• module srl

• category

• member who created the document

• title

• content

• tags

• type: notice, secret

• number of views, votes, etc.

• date created, date modified

This chapter describes XE's utility functions: global functions and functions for each class.

6. API Reference

6. API Reference

60 XE Developer Manual

6.1 XE Global Functions

The global functions of XE are defined in the XE_ROOT/config/func.inc.php file.

debugPrint(mixed OBJECT)

This is the debugging function.

The value of __DEBUG__ must be defined as one or higher in the

XE_ROOT/config/config.inc.php file. You can select the method by which to obtain the result

value in accordance with the __DEBUG_OUTPUT__ value.

• 0: Connect to files/_debug_message.php to display

• 1 : Display as a comment at the bottom of HTML (When the response method is HTML)

• 2: Display on the Firebug console (PHP >= 5.2.0. Firebug/FirePHP plugin required)

instance getController(string MODULE_NAME)

The function imports the controller instance of a module.

// If you want to get the document.controller.class instance

$oDocumentController = &getController('document');

instance getAdminController(string MODULE_NAME)

This function imports the Admin controller instance of a module.

// If you want to get the documentAdminController instance

$oDocumentAdminController = &getAdminController('document');

instance getView(string MODULE_NAME)

This function imports the view instance of a module.

// If you want to get the rssView instance

$oRssView = &getView('rss');

instance getAdminView(string MODULE_NAME)

This function imports the Admin view instance function.

// If you want to get the adminAdminView instance

$oAdminAdminView = &getAdminView('admin');

instance getModel(string MODULE_NAME)

This function imports the model instance of a module.

// If you want to get the documentModel instance

$oDocumentModel = &getModel('document');

instance getAdminModel(string MODULE_NAME)

This function imports the Admin model instance of a module.

// If you want to get the documentAdminModel instance

$oDocumentAdminModel = &getAdminModel('document');

instance getAPI(string MODULE_NAME)

This function imports the API instance of a module.

// If you want to get the boardAPI instance

$oBoardAPI = &getAPI('board');

instance getWAP(string MODULE_NAME)

This function imports the WAP instance of a module.

6. API Reference

 61

// If you want to get the boardWAP instance

$oBoardWAP = &getWAP('board');

instance getClass(string MODULE_NAME)

This function imports the class instance of a module.

// If you want to get the documentClass instance

$oDocumentClass = &getClass('document');

Object executeQuery(string QUERY_ID, stdClass PARAM)

This function executes an XML Query. The result data is returned to the object of the object

class.

The query failure shows that Object::toBool() is FALSE. If the value is TRUE, it shows that the

query was normally executed.

The result data of the select statement is put in the Object::data variable and returned to the

object.

Object executeQueryArray(string QUERY_ID, stdClass PARAM)

This function has the same feature as executeQuery(), but it returns in array even though the

result of the Object:data variable is a single row when it is selected.

int getNextSequence()

This function imports the next sequence number.

XE uses one sequence internally, and all keys, such as member_srl, module_srl and

document_srl, are set by using this function. The document_srl does not increase by +1

gradually, but XE uses the sequence in such a way because it has many advantages.

string getUrl(['',] string KEY, string VALUE [,string KEY, string VALUE ...])

This function creates URLs.

XE changes a URL with a given parameter value, and then returns the URL to the currently

requested RequestURI. If the value of the first parameter is ", XE creates a URL to RequestURI

with the added args_list.

// domain : www.example.com

// xe install path : /xe

// request url : www.example.com/xe/index.php?module=sample&act=dispSampleAct

$reset_url = getUrl('', 'module', 'reset');

print_r($reset_url);

// result : /xe/index.php?module=reset

$update_url = getUrl('module', 'update');

print_r($update_url);

// result : /xe/index.php?module=update&act=dispSampleAct

string getFullUrl(['',] string KEY, string VALUE [,string KEY, string VALUE ...])

This function creates a URL starting with http://.

// domain : www.example.com

// xe install path : /xe

// request url : www.example.com/xe/index.php?module=sample&act=dispSampleAct

$reset_url = getFullUrl('', 'module', 'reset', 'mid', 'samplemid');

print_r($reset_url);

// result : http://www.example.com/xe/index.php?module=reset&mid=samplemid

6. API Reference

62 XE Developer Manual

string getNotEncodedFullUrl(['',] string KEY, string VALUE [,string KEY, string VALUE ...])

This function creates an unencoded URL. It has the same feature as getFullUrl().

// domain : www.example.com

// xe install path : /xe

// request url : www.example.com/xe/index.php?module=sample&act=dispSampleAct

$reset_url = getNotEncodedFullUrl('', 'module', 'reset', 'mid', 'samplemid');

print_r($reset_url);

// result : http://www.example.com/xe/index.php?module=reset&mid=samplemid

string getAutoEncodedUrl([‘’,], string KEY, string VALUE [,string KEY, string VALUE …])

This function creates a URL which is encoded automatically but not repeatedly.

// domain : www.example.com

// xe install path : /xe

// request url : www.example.com/xe/index.php?module=sample&act=dispSampleAct

$reset_url = getAutoEncodedUrl('', 'name', '<script>', ‘title’, ‘<title’);

print_r($reset_url);

// result : http://www.example.com/xe/index.php?name=<script&rt;&title=<title

string getSiteUrl(string DOMAIN, ['',] string KEY, string VALUE [,string KEY, string VALUE ...])

This function creates a URL for a virtual site. The first parameter domain gets a domain or vid.

// domain : www.example.com

// xe install path : /xe

// request url : www.example.com/xe/index.php?module=sample&act=dispSampleAct

$reset_url = getSiteUrl('site_id', '', 'module', 'reset');

print_r($reset_url);

// result : http://www.example.com/xe/index.php?module=reset&vid=site_id

string getNotEncodedSiteUrl(string DOMAIN, ['',] string KEY, string VALUE[,string KEY, string
VALUE...])

This function creates an unencoded URL. It has the same feature as getSiteUrl().

string getFullSiteUrl(string DOMAIN, ['',] string KEY, string VALUE [,string KEY, string VALUE ...])

This function creates a URL starting with http:// for a virtual site.

int ztime(string STR)

This function changes the time value of YYYYMMDDHHIISS format to Unix time.

string getTimeGap(string DATE, string FORMAT)

This function displays the YYYYMMDDHHIISS time format as a string showing the remaining

minutes/hours to the current time. If the time gap is more than 24 hours, it displays the time

in the FORMAT.

string getMonthName(int MONTH, bool SHORT)

This function displays month names.

print_r(getMonthName(3, true));

// result : Mar

print_r(getMonthName(10, false));

// result : October

string zdate(string STR, string FORMAT, bool CONVERSION)

This function changes the time value of YYYYMMDDHHIISS format into a desired time format.

print_r(zdate('19830310123644', 'Y-m-d H:i:s'));

6. API Reference

 63

// result : 1983-03-10 12:36:44

string cut_str(string STRING, int CUT_SIZE, string TAIL)

This function cuts a string to a certain size and then adds a tail to the back of the string.

print_r(cut_str('All roads lead to XE', 3, '...'));

// result : All…

string removeHackTag(string CONTENT)

This function removes code suspected as hacking attempts.

bool isCrawler(string AGENT)

This function inspects login user agent and its IP to check whether it is a robot or not.

6. API Reference

64 XE Developer Manual

6.2 Context Class

Context receives the value of GET/POST and passes variables and diverse information to a

template. In addition, it identifies whether the request is XMLRPC, JSON or GET/POST.

Context::set(string KEY, mixed VALUE)

This function sets the variables to be passed to a template.

Context::set('user_id','user'');

Once the template has been set, the {$user_id} format can be used.

mixed Context::get(string KEY)

This function retrieves the variable that has been passed to Request or the value of the set

result.

$user_id = Context::get('user_id');

stdClass Context::gets(string KEY1 [, string KEY2 ...])

This function retrieves multiple values at once and returns them to stdClass.

stdClass Context::getRequestVars()

This function returns the variable passed from a request to stdClass.

Context::addJsFile(string FILE_PATH, bool OPTIMIZED ,string TARGETIE, int INDEX)

This function adds JavaScript files to a template. It only adds the files with an extension

ending with js.

Context::addCSSFile(string FILE_PATH, bool OPTIMIZED ,string TARGETIE, int INDEX)

This function adds CSS files to a template.

Context::addJsFliter(string FILTER_NAME)

This function loads a filter written in XML to a template.

Context::setBrowserTitle(string TITLE)

This function specifies the title value of an HTML.

Context::loadJavascriptPlugin(string PLUGIN_NAME)

This function loads JS plugins to a template.

Context::addHtmlHeader(string HEAD)

This function adds a string between <head> and </head> of an HTML.

6. API Reference

 65

6.3 Extravar Class

The Extravar class is often used in extended variables and for a module such as a bulletin

board.

ExtraItem::setValue(string VALUE)

This function specifies the value of an extended variable.

ExtraItem::getValueHTML()

This function processes and displays the value of the extended variable specified by the

ExtraItem::setValue() function as an HTML file according to the type of the extended variable.

ExtraItem::getFormHTML()

This function displays the input form of an HTML result file according to the type of the

extended variable.

6. API Reference

66 XE Developer Manual

6.4 Mail Class

The Mail class is used to send mails in XE. XE can send mails only when the server is

configured to send mails.

Mail::setSender(string NAME, string EMAIL)

This function specifies the sender of mail.

Mail::getSender()

This function returns the sender specified by the Mail::setSender() function.

• It encodes the sender in base64, and returns it if a sender name exists.

• It returns empty string (' ') if a sender name does not exist.

Mail::setReceiptor(string NAME, string EMAIL)

This function specifies the recipient of mail.

Mail::getReceiptor()

This function returns the recipient specified by the Mail::setReceiptor() function.

• It encodes the recipient in base64 and returns it if a recipient name exists.

• It returns empty string (' ') if a recipient name does not exist.

Mail::setTitle(string TITLE)

This function specifies the title of mail.

Mail::getTitle()

This function returns the title of mail that has been encoded in base64.

Mail::setContent(string CONTENT)

This function specifies the body of mail.

Mail::replaceResourceRealPath(mixed MATCHES)

This function converts the address of the image included in the body to an absolute path.

Mail::getPlainContent()

This function returns the body of mail in text.

Mail::getHTMLContent()

This function returns the body of mail in HTML format.

Mail::setContentType(string MODE)

This function specifies the format of the mail body. The default is HTML format.

Mail::send()

This function actually sends a mail.

Specify the sender, recipient, and the body of mail by using the Mail::setSender(),

Mail::setReceiptor() and Mail::setContent() functions before sending it.

6. API Reference

 67

Mail::checkMailMX(string EMAIL_ADDRESS)

This function checks the validity of a mail address. It returns false if the mail address is

incorrect.

Mail::isVaildMailAddress(string EMAIL_ADDRESS)

This function quickly checks the validity of a mail address in regular expression. It returns the

$email_address variable unchanged if the address is valid.

6. API Reference

68 XE Developer Manual

6.5 Object Class

The Object class is used to exchange data between modules. Modules inherit from Object and

transfer values and states by means of the errors, messages and variables of Object.

Object::Object([int ERROR, string MESSAGE])

An Object creator.

• ERROR: Error code (not an error if this value is 0)

• MESSAGE: Error message (not an error if this value is success)

bool Object::toBool()

This function checks whether the Object is an error. If the return value is true, the object is

not an error.

$output = executeQuery('document.insertDocument', $obj);

if(!$output->toBool()) {

 $oDB->rollback();

 return $output;

}

Object::add(string KEY, mixed VALUE)

This function adds a variable in which the value of the key is KEY to Object.

Object::adds(stdClass OBJECT)

This function adds all the variables in the stdClass to Object.

$oObj = new Object();

$params->key1 = "value1";

$params->key2 = "value1";

$oObj->adds($obj);

mixed Object::get(string KEY)

This function returns Object's variables whose key is KEY.

stdClass Object::gets(string KEY[, string KEY , ...])

This function returns Object's variables whose key is KEY, in the form grouped by stdClass.

$obj = $oObj->gets('key1','key2','key3');

// $obj->key1, $obj->key2, $obj->key3

6. API Reference

 69

6.6 FileHandler Class

This class defines methods to handle folders and files.

FileHandler::copyDir(string SOURCE_DIR, string TARGET_DIR [, string FILTER] [, string TYPE])

This function is used to copy directories from SOURCE_DIR to TARGET_DIR.

• FILTER: When you copy the subdirectories and files in a directory using a regular
expression, the matching files will not be copied.

• TYPE: If the option is 'force,' the function will overwrite any duplicate files that exist in the

subdirectory.

FileHandler::copyFile(string SOURCE _FILE, string TARGET_FILE [, string FORCE])

This function copies files from SOURCE_FILE to TARGET_FILE.

• FORCE: If the option is 'Y,' the function will overwrite any duplicate files.

string FileHandler::readFile(string FILE_NAME)

This function reads the content of a file and returns it.

FileHandler::writeFile(string FILE_NAME, string BUFFER [, string MODE])

This function writes the content of BUFFER to a file.

• FILE_NAME: A file to be saved

• BUFFER: Content to be saved

• MODE: 'w' - Save new, 'a' - Update previous save

FileHandler::makeDir(string PATH)

This function creates a directory and its sub-directories of PATH in a recursive way.

FileHandler::makeDir(_XE_PATH_ . 'files/cache/nhn/openuitech/sol');

FileHandler::removeDir(string PATH)

This function deletes a directory and its subdirectories of PATH in a recursive way.

FileHandler::removeDir(_XE_PATH_ . 'files/cache/openiuthech');

bool FileHandler::getRemoteFile(string URL, string TARGET_FILE)

This function saves remote files.

• URL: Enter a path starting with 'Http://'.

• TARGET_FILE: Files to be saved

bool FileHandler::createImageFile(string SOURCE_FILE, string TARGET_FILE ,int WIDTH, int HEIGHT,
string FILE_TYPE, string THUMBNAIL_TYPE)

This function uses the existing image file to create a thumbnail by specifying size and creation

type (ratio or crop).

• SOURCE_FILE: Original image file

• TARGET_FILE: Image files to be saved

• WIDTH: Width of the image to be saved

• HEIGHT: Height of the image to be saved

• FILE_TYPE: Type of Image to be saved

• THUMBNAIL_TYPE: 'ratio,' 'crop,' or thumbnail

